Identification and Classification of Malicious Traffic
within Network Intrusion Detection System

Annabelle Crescenzo
Department of Mathematical Sciences
Stevens Institute of Technology
Hoboken, NJ, USA
acrescen @stevens.edu

Abstract—Cybersecurity is one of the fastest growing fields in
the world. Due to the sophisticated levels of malicious attacks,
sophisticated methods of detecting these attacks are constantly
being developed. Similar to cybersecurity, Machine Learning
(ML) is constantly evolving and making advancements. ML
makes predictions or derives insights based on data. Since mali-
cious attacks constantly occur in cybersecurity, there is an endless
amount of data to train these models. By combining the knowl-
edge and purpose of cybersecurity with the computational power
of ML, the idea of traditional cybersecurity is changing forever.
This study aims to evaluate the performance of supervised binary
and multiclass classifications models, such as Logistic Regression,
Support Vector Machines (SVM), Decision Trees, and Artificial
Neural Networks (ANN), for identifying cyberattacks in Network
Intrusion Detection Systems (NIDS). Binary models distinguish
between benign and anomaly events, while multiclass models
distinguish between benign and specific cyberattacks: DDoS,
PortScan, and Bot. For further analysis, unsupervised learning
through K-Means Clustering was implemented to simulate real-
world scenarios where labeled data is unavailable. While su-
pervised models achieved high overall accuracy and recalls, the
models demonstrated sensitivity to class imbalance, especially in
detecting rare attack types. Similarly, the unsupervised clustering
showed high accuracy for majority classes, but struggled with
detecting uncommon network traffic. We also analyzed the
information gain of high-dimensional features and selected only
the most critical attributes to simplify model implementation.
This study demonstrates the use of various models to build
effective intrusion detection systems.

I. INTRODUCTION

In today’s technological landscape, cybersecurity is an
ever-evolving field essential for maintaining the efficient and
smooth functioning of society. Its purpose is to protect against
cyberattacks that can disrupt operations and interfere with
the daily functioning of individuals and businesses. More and
more aspects of our lives, such as communication, shopping,
and financial transactions, are becoming reliant on the internet
and digital platforms. As this expansion continues, the poten-
tial for data breaches grows exponentially.

A. Background

Networks play a crucial role in the distribution of informa-
tion and the transfer of data across interconnected computer
systems worldwide. Implementing network security protects
data from unauthorized access and modification from threat

Skye Jorgensen
Department of Mathematical Sciences
Stevens Institute of Technology
Hoboken, NJ, USA
sjorgen] @stevens.edu

Angel Ordonez Retamar
Department of Computer Engineering
Stevens Institute of Technology
Hoboken, NJ, USA
aordonez @stevens.edu

actors, which ensures the three focal points of security: confi-
dentiality, integrity, and availability of the data. As more digital
systems are created and threat actors refine their techniques,
the ability to successfully detect malicious events on a network
is required.

Anomaly detection was traditionally performed using a
signature-based approach. This method involves comparing
active network traffic against a known set of attack signatures
and patterns, and then flagging activity that matches. However,
signature-based Intrusion Detection Systems (IDS) struggle
to detect new, evolving, or unknown cyberattacks that do
not have previously collected corresponding signatures. This
requires constant updates to the database of known signatures
to remain relevant and effective, which quickly becomes a
time-consuming process.

Integrating both supervised and unsupervised machine
learning (ML) methods with IDS allows us to overcome the
weaknesses of a traditional signature-based approach. ML
models trained on historical data can detect deviations from
normal network traffic, identifying activities that may indicate
malicious intent. As network traffic increases, an increasing
amount of data is collected; however, ML models are adept
at handling large volumes of data. As threat actors develop
new and emerging attacks, ML models can adapt to changing
patterns and trends in network traffic, reducing the number of
manual updates.

B. Our Methodology

In this study, we aim to develop a robust Network IDS
(NIDS) that can classify network traffic as either a benign
event or an anomaly using various machine learning proce-
dures. Due to the large number of features collected by IDS,
we will identify the most critical features that contribute to
an anomaly, allowing efficient intrusion detection. Through
the calculation of information gain, we can determine which
features play an important role in distinguishing a benign event
from a malicious one.

We will implement anomaly detection using binary classifi-
cation to identify the occurrence of suspicious activity within
the network. Common ML models for this procedure include:
Logistic Regression and Support Vector Machine (SVM). In
Logistic Regression, we will conduct hyperparameter tuning

to determine the optimal values for penalty and regularization
strength. In SVM, we will perform hyperparameter tuning
to find the optimal values for kernel, C, and gamma. We
will evaluate the performance of the models by visualizing
the confusion matrix and calculating the following metrics:
accuracy, precision, recall, and F1 score.

We will further our understanding of network IDS by iden-
tifying and classifying malicious traffic into specific intrusion
types, such as DDoS, Port Scans, and Bot attacks, with multi-
class classification procedures. Common ML methods for
this procedure include: Decision Trees and Artificial Neural
Networks (ANN). In Decision Trees, we will perform hy-
perparameter tuning to find the optimal values for maximum
depth, minimum leaf sample, and minimum sample split. For
ANN, we will perform hyperparameter tuning to determine
the optimal values for the number of hidden layers, the
number of neurons per hidden layer, and the learning rate.
The performance of the model will be evaluated in the same
manner as previously described for binary classification.

In real world implementations, the true labels of network
traffic are unknown. As a result, supervised learning methods
are not applicable, so we will apply unsupervised learning
techniques, such as K-Means clustering, to group network
traffic based on underlying patterns. Through clustering, we
can understand the distinguishing traffic behaviors and identify
characteristics of each group without prior knowledge of
labels. These procedures will enhance our understanding of
feature relationships and support effective NIDS development.

II. RELATED WORK

Previous research has been conducted exploring the imple-
mentation of ML in NIDS for detection of malicious traffic.
Specific to binary classification of intrusion detection, Chowd-
hury et al. [1] presented an approach focused on enhancing
detection accuracy by using random feature selection together
with Support Vector Machines (SVM). The ML techniques
were evaluated on the UNSW-NB15 dataset, which are raw
network packets from a collection of modern normal activ-
ities and contemporary cyberattacks. The approach achieved
a 98.76% accuracy, demonstrating that robust detection is
possible with limited features.

Previous work on supervised machine learning techniques
for cloud security was conducted in 2016 by Bhamare et
al. [2] They focused on three binary classification models:
SVM, Logistic Regression, and Decision Trees, with attack
and normal as the labels. This approach highlighted a training
set imbalance; only 32% of data represented the normal
traffic. This study emphasized the need for further research in
handling resilience to class imbalance, which has since been
conducted.

A 2024 study by Talukder et al. [3] introduced a machine
learning-based network intrusion detection model tailored for
large and imbalanced datasets. The model employs Random
Oversampling to address data imbalance, Stacking Feature
Embedding based on clustering results, and Principal Com-
ponent Analysis (PCA) for dimensionality reduction. The ML

techniques implemented include Decision Trees and Random
Forest, and the models achieved an accuracy rate up to
99.99%, which outperformed many existing methods. This
demonstrates significant advancements in network intrusion
detection.

Along with Decision Trees, other common models used
with this issue have included Support Vector Machine and
K-Nearest Neighbors. Machine Learning techniques such as
these are often compared to Deep Learning techniques, such
as convolutional neural networks (CNN). In 2023, the use of
CNN was studied by Assay et al. [4] by chaining the outputs
of CNN hidden blocks as the input of the next CNN hidden
blocks. The results produced by this model were comparable
to traditional ML models.

In multi-class classification, data is not only labeled as
normal, but also as different cyberattacks, such as Denial
of Service, User to Root, and Remote to Local. A study
conducted by Hindy et al. [5] evaluated six machine learn-
ing models for intrusion detection in IoT environments. The
models included: Logistic Regression, Naive Bayes, K-NN,
SVM, Decision Tree, and Random Forest. The study compared
flow-based features and packet-based features. Their results
showed that flow-based features are more effective for iden-
tifying attacks on the Message Queuing Telemetry Transport
(MQTT) protocol, while packet-based features perform better
in traditional network intrusion detection.

These studies demonstrate the evolving nature of machine
learning techniques and approaches to intrusion detection,
which shows the continuing improvements in handling im-
balanced data and feature selection. They also highlight the
variety of models used across binary and multiclass classifi-
cation tasks.

III. PROBLEM STATEMENT

The current challenge is the lack of an adaptive and effec-
tive Network Intrusion Detection Systems that can accurately
identify cyberattacks, as threat actors continue to develop the
scale, complexity, and frequency of attacks. The traditional
Signature-based IDS relies on known patterns that are corre-
lated to each attack type for detection; however, this approach
has many limitations. The reliance on outdated and poorly
performing systems can have severe consequences, such as
data breaches, service disruptions, and financial loss. Our mo-
tivation is to utilize various ML techniques to produce NIDS
that accurately detect anomalies and identify the specific attack
types. Supervised learning methods are applicable to binary
and multi-class anomaly classification tasks, and unsupervised
learning is used for real-life scenarios where labels are not
available. Feature selection is helpful to determine critical
attributes of network traffic that are key to distinguishing
malicious events from benign ones. Through these applica-
tions, our goal is to create a NIDS that reduces the need for
manual intervention in updating the system, adapts to new
attack strategies, and effectively identifies malicious activity
to protect against cyberattacks.

IV. DATA AND PREPROCESSESING
A. Dataset Overview

We are working with the publicly available dataset devel-
oped by the Canadian Institute for Cybersecurity Intrusion
Detection System. The motivation behind this dataset is to
provide a reliable set of testing data for intrusion detection,
as many existing datasets are out of date and do not contain
a current representation of traffic volume and cyberattack
diversity. We are exploring all data collected on Friday, July
7, 2017 between the hours of 9am and Spm. There are 3 files
that pertain to this date, and each file has the same structure.
The dataset consists of 78 numerical features, represented as
integers or floats. The target variable has four distinct classes:
Benign, PortScan, DDoS, and Bot. Across all 3 files, there are
a total of 703245 observations.

B. Preprocessing Techniques

Before combining all 3 data files, we identified any missing
values in the attributes. We found that the “Flow Bytes/s”
feature was the only one with null values in all files. There
are a total of 47 missing values in this feature and, since this
is an extremely small amount compared to the size of the
total dataset, we decided to remove the rows that contained a
null value. The descriptive statistics for each attribute revealed
that "Flow Bytes / s’ and "Flow Packets / s’ both had a mean
and a maximum value of ’inf’ and a standard deviation of
NaN. Between all 3 files, there are a total of 480 infinite
values for both features. We replaced the infinite values with
nulls and then imputed the null values with the median of
that column. Including missing and infinite values can disrupt
statistical calculations and introduce errors in classification
and predictive modeling, so it is beneficial to only work with
complete observations.

After handling null and infinite values, we combined all
the files into one dataset that includes the Benign, PortScan,
DDoS, and Bot observations. Since the current target column
includes all 4 classes, we included an additional target column
“Bin Label” with binary labels to prepare our data for binary
classification. The binary classes are Benign and Anomaly,
where the cyberattacks (PortScan, DDoS, and Bot) are con-
sidered an Anomaly and the Benign events remain labeled as
Benign. The column that represents the multiclass labels was
renamed as “Multi Label” to ensure consistency in the dataset.

C. Data Visualization

For our research, the target variable we are predicting is
observed in its original multi-class form and in a binary form.
In the multi-class form, each observation of the intrusion
detection system can be classified as: Benign, Bot, DDoS,
or PortScan. This will also be condensed into binary classes:
Benign and Anomaly. Here, the Anomaly class comprises the
observations not classified as Benign, so it is a combination of
Bot, DDos, and PortScan. The distribution of the data can be
observed in the following pie charts. The observations are 58.9
Benign and 41.1% Anomaly. This Anomaly class comprises:
22.6% PortScan, 18.2% DDoS, and 0.3% Bot.

Distribution of Categories

Bot

BENIGN PortScan

Fig. 1. This the distribution of Multi-Class Classification

Distribution of Categories

ANOMALY

BENIGN

Fig. 2. This the distribution of Binary Classification

V. SYSTEM METHODOLOGY

This section will describe the various ML algorithms and
models that will be implemented throughout our project for
binary and multi-class classifications, for identifying important
features in classification, and for unsupervised learning.

A. Information Gain

To reduce the complexity of the dataset and improve model
efficiency, we begin by calculating the information gain of
each feature. This metric evaluates how much uncertainty
(entropy) in the dataset is reduced when splitting on a specific
feature.

G(A) = H(S) — H(S|4) (D

where A is an attribute and S is a set of examples.
H(S) = - P(S=i)log, P(S =) 2)
i=1

is the entropy of set .S.

k
S;
H(S|A) =) || 5||H (S:) 3)
=1

is the conditional entropy after splitting on A. Features with
the highest information gain contribute the most to distinguish-
ing between benign and anomalous activity. By selecting only
the most informative features, we can reduce overfitting and
improve model training time.

B. Logistic Regression

Logistic Regression is a linear model used for binary classi-
fication problems, which is appropriate for identifying whether
an individual event over the network is benign or anomalous. It
is easy to interpret and computationally efficient. The logistic
regression utilizes the sigmoid function to transform the output
of linear regression into a probability between 0 and 1 to
represent the likelihood of an outcome. The sigmoid function
is as follows: 1

o(x) = The-= “)

To prevent overfitting and enhance generalization, a penalty
term is added to the loss function. This study considers two
types of regularization: L1 (LASSO) and L2 (Ridge). The
optimal regularization method will be determined through
hyperparameter tuning and performance comparison.

The expression for L1 (LASSO) and L2 (Ridge) is as
follows:

Ri(0) =X\ |0 (5)
j=1
AN
Ro(0) =5 > 65 6)
j=1

where the cost function is

D. Decision Trees

Decision Trees are a hierarchical model that recursively
splits data based on a feature using criteria such as information
gain or Gini impurity. Since our labels are discrete, we are gen-
erating a classification tree. The model is well-suited for multi-
class classification, which makes it an appropriate choice for
distinguishing between different types of cyberattacks (DDoS,
PortScan, Bot). Decision Trees are beneficial because they
can handle both numerical and categorical data. We will use
hyperparameter tuning to optimize max depth, min samples
leaf, and min samples split to balance bias and variance for
the model. To choose the best attribute for splitting feature,
refer to (1) for information gain and the equation for Gini
impurity is

Gini(S) =1-Y p} (11)
i=1

E. Artificial Neural Networks (ANN)

Artificial Neural Networks are modeled after the human
brain and use interconnected nodes organized in layers to
process data. ANN is appropriate for classifying the different
types of cyberattacks because it is highly effective with multi-
class classification tasks. ANN can learn abstract patterns and
adapt to the evolving aspects of cyberattacks and network
traffic. We will design an ANN with at least one hidden layer
and use ReLU activation in the hidden layers and softmax
activation in the output layer for multi-class classification.
Hyperparameter tuning will be performed for the number of
hidden layers, number of neurons per layer, and learning rate

J(0) = _% zm: [y(i) log ha(2®) + (1 — y®) log(1 — he (x(i)))]o improve classification accuracy and convergence.
i=1

(7
C. Support Vector Machine (SVM)

Support Vector Machine is a classification algorithm that
aims to find the optimal hyperplane that separates classes by
the maximum margin. SVM is especially useful for binary
classification making it appropriate for distinguishing between
benign and malicious network traffic activity. The optimal
hyperplane of the model that acts as a decision boundary is
given by:

wox + by =0 ®)

The hyperplanes of the positive class and negative class are
as follows:
wox + by =1)

wox + by = —1 (10)

We will perform hyperparameter tuning for the kernel type,
regularization parameter (C), and kernel coefficient (gamma)
to enhance model accuracy and improve generalization. The
kernel type determines the type of decision boundary, C
decides the trade-off between maximizing the margin and
minimizing the training error, and gamma decides the amount
of curvature present in the decision boundary.

F. K-Means Clustering

K-Means clustering is an unsupervised ML technique that
groups similar instances based on patterns within the features
and without relying on labels. It works by randomly initializing
cluster centroids, assigning each data point to the nearest
centroid, and then iteratively updating the centroids based on
the mean of the cluster points until convergence. The nearest
centroid is determined through the Euclidean distance formula,
where x is a data point, c is a cluster centroid, and n is the
number of features:

(12)

K-Means clustering is an appropriate model because each
resulting cluster represents network traffic with similar charac-
teristics. Since real world network traffic has unknown labels,
applying K-Means will group similar network behaviors to-
gether, allowing us to discover innate patterns that may be
associated with benign activity or different cyberattacks. This
improves our ability to identify and characterize anomalies in
network traffic.

VI. OUR IMPLEMENTATIONS

This section describes the steps and results of the various
ML techniques we implemented. For all models, the data was
split 80% for training and 20% for testing.

A. Determining Critical Features

Calculating the information gain for each feature for the
binary and multi-class target variables allows us to determine
the most important features that impact network traffic as a
benign and malicious event. We selected the top 20 attributes
to build more accurate and efficient models. Since the dimen-
sionality of attributes is high, selecting certain features reduces
overfitting, simplifies the models, and improves the training
and testing times. The Tables IV and V display the top 20
attributes with the highest information gain values for multi-
class and binary classification, respectively.

B. Binary Classification

1) Logistic Regression: To develop a binary classification
model for anomaly detection, we implemented Logistic Re-
gression using the top 20 features selected through infor-
mation gain analysis. In order to use the best performing
model, hyperparameter tuning was conducted using a Grid-
SearchCV procedure. Some of the combinations checked in-
cluded penalty type (L1 or L2) and regularization strength (C)
were optimized through 3-fold cross-validation. The optimal
model was found to use L1 regularization with a regularization
strength of C = 0.01, and the saga solver was selected to
efficiently handle the large dataset.

2) SVM: There are various ways to implement Support
Vector Machines (SVMs). Choosing the correct model, or hy-
perparameter tuning, meant comparing the different strengths
and seeing how they best aligned with our data. The first im-
plementation of SVM utilized kernel support, or a model that
can utilize the “kernel trick” to capture nonlinear relationships.
Due to the sheer size of our data this model, Support Vector
Classification, did not finish running even after an extensive
amount of time. The reason behind this was that the model
tried to build a kernel matrix which takes a time complexity
of O (n?). This meant the final model we used, Linear Support
Vector Classifier, would not have kernel support. Due to the
lack of kernel support, in order to implement it we had to first
scale the inputs. Scaling the inputs is required to ensure that
no numerical feature dominates the model due to size, rather
than its significance. To scale we used StandardScaler, which
performs Z-score normalization to each input.

3) Ensemble Model: In order to improve overall perfor-
mance of binary classification, we created an ensemble model.
The main function of an ensemble model is to combine inde-
pendent models, in our case we combined Logistic Regression
with SVM. The ensemble model took in initialized models of
Logistic Regression and SVM. For SVM, it was still required
to scale the inputs. These initialized models make up our list of
estimators that already are fit to the data. To reduce the amount
of variance in overall performance, we chose a VotingClassifier
ensemble model. This was done with the goal of seeing the

result for combining the predictions of our estimators. For the
voting type we needed to use “hard” voting. This meant a
vote was either casted in one binary classification output, or
the other. The other kind of voting, “soft”, was not an option
for our model because this meant averaging class probabilities.
Since these probabilities are not available in Linear Support
Vector Classification, we used “hard”.

C. Multi-Class Classification

1) Decision Tree: When implementing Decision Trees for
multiclass classification, the extreme class imbalance between
Benign, DDos, PortScan, and Bot classes resulted in biased
and inaccurate predictions. To address the class imbalance,
we performed under-sampling, which reduces the number of
samples in the majority classes to match the number of obser-
vations of the minority class. The original class distribution
and the resampled class distribution are shown in Table VI.
An initial Decision Tree was trained on the top 20 features
based on information gain and with a maximum of 20 leaf
nodes. The resulting tree is shown in Fig 18. To ensure, the
model is performing at its best, hyper-tuning was conducted
on the following parameters:

¢ Criterion = function to measure the quality of a split

e Max_depth = maximum depth of the tree

e Min_samples_split = minimum number of samples re-

quired to split an internal node, min

e Min_samples_leaf = minimum number of samples re-

quired to be at a leaf node

The values considered for each parameter are shown in Table I.
The resulting hyper-tuned tree is shown in Fig 20. After tuning,
the tree demonstrated improved accuracy, but it became signifi-
cantly larger and more complex with multiple nodes and splits.
This complexity hindered transparency and interpretability of
the tree, which is one of the primary advantages of this model.

To address the complexity of the tree, we introduced a
new hyperparameter: max_leaf_nodes. This parameter places
a limit on the number of leaf nodes that can exist in the
tree. The parameter values we explored for max_leaf nodes
are shown in Table II. The tree produced with this added
constraint is shown in Fig. 22, and it is notably more compact
and interpretable compared to its unrestricted tree.

TABLE 1
HYPERPARAMETERS: NO LIMIT ON LEAF NODES
Parameter Values
criterion ["gini’, ’'entropy’, 'log_loss’]
max_depth 10, 15, 20, 25, 30, None]

[5,
min_samples_split [2, 5, 10]
min_samples_leaf [1, 2, 4]

2) ANN: To implement an ANN model, we performed one-
hot encoding to represent the categorical target variables as
numerical values that are suitable for the model to use. The
features were standardized using StandardScalar in order to
improve the efficiency of the model and increase the model
convergence during training. We constructed an ANN model
with 2 hidden layers that used the ReLU activation function.

TABLE II
HYPERPARAMETERS: LIMITED LEAF NODES
Parameter Values
criterion ["gini’, ’'entropy’, ’"log_loss’]
max_depth [5, 10, 15, 20, 25, 30, None]
min_samples_split [2, 5, 10]
min_samples_leaf [1, 2, 4]
max_leaf_nodes [5, 10, 15, 20, 25, 30, 35, 40]

Each hidden layer is followed by a dropout layer with a
dropout rate of 0.5, meaning half of the neurons are disabled in
each iteration. A final output layer uses the softmax activation
function and has 4 units, representing the 4 classes we are
looking to classify. The ANN model was trained using the
Adam optimizer.

dense_12 (Dense)

Input shape: (None, 20) | Output shape: (None, 64)

dropout_8 (Dropout)

Input shape: (None, 64) | Output shape: (None, 64)

dense_13 (Dense)

Input shape: (None, 64) | Output shape: (None, 32)

dropout_9 (Dropout)

Input shape: (None, 32) | Output shape: (None, 32)

dense_14 (Dense)

Input shape: (None, 32)

Output shape: (None, 4)

Fig. 3. ANN Model Structure.

To determine the optimal learning rate, we conducted hy-
perparameter tuning over four learning rates: 0.1, 0.01, 0.001,
and 0.0001. For each learning rate, a model was trained for 10
epochs with a batch size of 128 and with 20% of the training
data for validation. All models were evaluated with the full
testing dataset, and the learning rate that produced the highest
test accuracy was the learning rate in the final model.

The final ANN model had the same structure and used the
Adam optimizer. It was trained for 25 epochs with a batch
size of 32 and with 20% of the training data for validation.
Early stopping was also implemented with a patience of 5
epochs to prevent overfitting and retain the best-performing
weights by stopping the training process once the model’s
performance on the validation set began to degrade. The final
model architecture is summarized in Fig. 3.

D. Unsupervised Learning

To implement the unsupervised learning model, K-Means
Clustering, we standardized the features using StandardScaler.
This normalizes the scale of each feature, which is important
for models that are based on distance like K-Means. To
determine the optimal k value, which is the number of clusters,

we performed the Elbow Method. We computed the inertia
for k values 1 to 10 and plotted the inertia values versus
the corresponding k value to identify the elbow point, which
represents the optimal cluster count. By looking at the Fig 4,
we can identify the optimal k is 4 clusters. This corresponds
to the different types of network traffic in the dataset: Benign,
DDoS, PortScan, and Bot.

1e6 Inertia vs. k

Inertia

Fig. 4. Inertia v k Plot for Elbow Method.

K-Means Clusters Visualized with PCA Transformation

400

w
8
8

Principal Component 2
~
8
S

"
5
8

0 50 100 150 200
Principal Component 1

Fig. 5. k=4, K-Means Clusters.

The K-Means model was trained with the optimal k = 4,
and we reduced the data into 2 principal components using
Principal Component Analysis (PCA) in order to visualize
the clusters. The centroids of each cluster are also displayed
on the cluster scatter plot in Fig 5. A confusion matrix was
constructed in order to conduct cluster-to-class mapping to
identify the most frequent true class label within each cluster.
The points in the clusters were then assigned the corresponding
highest occurring network traffic type as its target label, which
is shown in Table III.

VII. PERFORMANCE EVALUATION

A. Binary Classification

1) Logistic Regression: Evaluating the model’s perfor-
mance on the test set, the Logistic Regression model achieved
an accuracy of 91%, a precision of 91%, a recall of 91%,
and an Fl-score of 91%. The confusion matrix indicated that

while the model had a slight tendency to misclassify some
anomalous events as benign, it demonstrated strong recall in
detecting anomalies (95%) and strong precision in identifying
benign events (96%). This balance between precision and
recall aligns well with the goal of the project: ensuring
that suspicious network activity is reliably detected while
minimizing the number of false alarms.

The use of L1 regularization not only helped prevent over-
fitting but also encouraged sparsity in the model, effectively
reducing the influence of less important features. These results
confirm that Logistic Regression, when combined with feature
selection based on information gain, can serve as an inter-
pretable and effective method for real-time anomaly detection
within NIDS.

Classification Report:
precision

recall fl-score

ANOMALY
BENIGN

8.84
8.96

8.95
8.88

.89
8.92

8.91
8.91
8.91

accuracy
macro avg
weighted avg

Fig. 6. Classification Report for Logistic Regression.

2) Support Vector Machines (SVM): Overall, the SVM
model performed well. It produced an overall accuracy of
90%. For anomalies there was a precision of 84%, a recall
of 95%, and a Fl-score of 89%. For benign instances there
was a precision of 96%, a recall of 87%, and a Fl-score of
91%. This shows that for SVM, the model was very good
at detecting real anomalies, as indicated by that class’s high
recall. This leaning toward classifying instances as anomalies
is better for the high-risk situations that cyber attacks can occur
in.

recall fl-score

precision

support

ANOMALY
BENIGN

.84
8.96

8.95
8.87

.80
8.91

9.90
8.9
9.90

accuracy
macro avg
weighted avg

Fig. 7. Classification Report for SVM.

3) Ensemble Model: At first, the ensemble model took in
the Logistic Regression model previously created along with
the SVM model previously created. This produced an overall
accuracy of 82%, which was lower than both the other binary
classifications separately. In the final version of the model, a
new, and untrained, model for both Logistic Regression and
Support Vector Machines was used as the estimators. Given
these parameters the model performed with an accuracy of
90%. In addition to its accuracy, for anomaly detection the
model had a precision of 83%, a recall of 95%, and a Fl1-
score of 89%. For the benign classification, the model had a
96% precision, a recall of 86%, and a Fl-score of 91%.

The better performance of new models compared to already
trained models may indicate that those models may be overfit
to the data. By using the new model, more generalizations
could be obtained. Overall, the high recall that was obtained
in the final model was most aligned with the high-risk imple-
mentations it is intended for.

recall fl-score

precision

support

ANOMALY
BENIGN

8.83
8.96

.95 -89
.86 -91

144382
287297

351599
351599
351599

accuracy
macro avg
weighted avg

Fig. 8. Classification Report for Binary Ensemble Model.

B. Multiclass Classification

1) Decision Model: The initial decision tree model with a
max of 20 leaf nodes achieved an overall model accuracy of
98%, indicating a strong performance in general; however, the
classification report shown in Fig. 9 reveals the precision, re-
call, Fl-score of each class. Despite under-sampling to combat
class imbalance, there is still a severe disparity between the
successful classification of Bot cyberattacks and the remaining
network traffic types within the testing set. The Bot class has a
low precision of 17% and high recall of 100%, indicating that
the model identifies most of the actual instances successfully,
but produces many false positives. From the confusion matrix
shown in Fig. 19, the model correctly classified all 996 Bot
samples, but over 4,700 Benign samples were misclassified
as Bot. The DDos and PortScan cyberattacks both had high
precision and high recall. Additionally, very few instances
of DDoS and PortScan traffic were misclassified as seen in
the confusion matrix. The Benign events were the majority
class and resulted in high precision and recall. The macro-
averaged Fl-score of 82% reflects the imbalance within the
class performances.

precision recall fl-score support

BENIGN 1.00 0.97 0.98 207297

Bot 0.17 1.00 0.29 996

DDoS 0.99 1.00 0.99 63780
PortScan 0.99 1.00 0.99 79526
accuracy 0.98 351599
macro avg 0.79 0.99 0.82 351599
weighted avg 0.99 0.98 0.99 351599

Fig. 9. Classification Report for Initial Decision Tree.

The first hypertuned tree with no limit on the number of leaf
nodes improved its overall model accuracy to 99%. The class
imbalance was still visible in the classification report shown in
Fig. 10; however, the precision of the Bot class increased sig-
nificantly to 39%, which is over double the precision from the
initial model. This indicates that the model can better balance
correctly identifying Bot events and reducing false positives.

From the confusion matrix shown in Fig. 21, misclassification
of Benign instances as Bots decreased by over 68%, which is
a notable reduction in false positives. The DDoS and PortScan
classes continue to have high precision and recall values and
minimal errors, suggesting the model can consistently classify
high volume traffic well. The Benign events remain accurately
classified with an Fl-score of 99%. The macro-averaged F1-
score increased to 88% shows a stronger performance across
all classes.

precision recall fl-score support

BENIGN 1.00 0.99 0.99 207297

Bot 0.39 0.99 0.56 996

DDoS 0.99 1.00 0.99 63780
PortScan 0.99 1.00 0.99 79526
accuracy 0.99 351599
macro avg 0.84 0.99 0.88 351599
weighted avg 0.99 0.99 0.99 351599

Fig. 10. Classification Report for First Hyper-tuned Decision Tree.

The final hypertuned tree with a limit on the number
of leaf nodes also achieved an overall accuracy of 99%.
The classification report shown in Fig. 11 showed that Bot
instances increased from 17% precision of the initial model to
25% precision. The recall remained extremely high, allowing
for an improved F1-score compared to the initial model, but
a decreased one compared to the previous hypertuning model.
The confusion matrix shown in Fig. 23, shows an increase
in the misclassification of Benign events as Bots compared
to the other hypertuning model, but not as severe as the
initial model. The DDoS and PortScan instances were clas-
sified well with high, unchanged precision and recall values
and only slight variations in misclassifications compared to
both previous models. The Benign events were still classified
successfully with an Fl-score of 99%, though there were the
minor increases in misclassifications. The macro-averaged F1-
score increased slightly to 84%, indicating a slight increase
in performance, but there still remains an imbalance across
classes.

precision recall fl-score support

BENIGN 1.00 0.98 0.99 207297

Bot 0.25 0.99 0.40 996

DDoS 0.99 1.00 0.99 63780
PortScan 0.99 1.00 0.99 79526
accuracy 0.99 351599
macro avg 0.81 0.99 0.84 351599
weighted avg 0.99 0.99 0.99 351599

Fig. 11. Classification Report for Final Hyper-tuned Decision Tree.

The final decision tree demonstrates that simplifying a
model through structural limitations, like maxing the number
of leaf nodes, can produce better generalization and inter-
pretable results without compromising accuracy and model
performance.

One advantage of decision tree models is that they pro-
vide clear visuals into the decision process, making them

highly accessible for human understanding. The models are
computationally efficient, which allows for faster training and
evaluation, which is very beneficial when conducting multiple
hyperparameter tuning processes. However, the disadvantages
include being prone to overfitting, especially without con-
straints like max_leaf_nodes. Decision trees may not perform
well on imbalanced datasets, as seen by the poor performance
in classifying Bot cyberattacks. It is likely that the model fails
to detect the minority class effectively.

2) ANN: To construct the best model, we evaluated four
learning rates and chose the one with the best accuracy. As
shown in Table VII, the learning rate of 0.001 outperformed
the others with an accuracy of 98.42%. When using this learn-
ing rate in the final ANN construction, the model achieved
a test accuracy of 98.95% and a test loss of 0.0323. This
suggests that the model performs strongly on the validation
and testing sets.

recall f1—sc6re

precision support

BENIGN 0.99 0.99 0.99 207297

Bot 0.99 0.34 0.50 996

DDoS 1.00 0.98 0.99 63780
PortScan 0.98 1.00 0.99 79526
accuracy 0.99 351599
macro avg 0.99 0.83 0.87 351599
weighted avg 0.99 0.99 0.99 351599

Fig. 12. Classification Report for ANN Model.

The classification report shown in Fig. 12 displays the
high precision, recall, and F1-scores for Benign, DDoS, and
PortScan classes. The Bot class resulted in a high precision
of 99% and low recall of 34%, indicating the model is
highly accurate when predicting an event as a Bot cyberattack,
but it fails to detect the majority of true instances of Bot
cyberattacks. From the confusion matrix displayed in Fig. 24,
the majority of misclassifications occurred for the Bot class,
where 644 Bot instances were misclassified as Benign events.
There were minimal errors in the other classes, which further
emphasizes the class imbalance. The macro average F1-score
was 87% and shows that the model performs very well overall,
but the performance is uneven across classes.

One advantage of ANN is the ability to model complex,
non-linear patterns and capture generalizations effectively.
This model achieved a high Fl-score of 99% for Benign,
DDoS, and PortScan, and a reasonable F1-score of 50% for the
Bot class, despite class imbalance. However, a major disadvan-
tage of ANN is that it requires significant training time and
computational resources. It also has limited interpretability,
since its process is not accessible to view. The ANN models
are also sensitive to the learning rate, making it an essential
process. Failing to hypertune the model effectively could result
in poor performance overall.

C. Unsupervised Learning

The K-Means clustering technique resulted in moderate
performance when labeling network traffic data. Due to the

class imbalance, the Bot class was not a majority class in any
cluster. From Fig 13, it is shown that Cluster 1 has 904 Bot
instances, which is 93% of the Bot observations. However,
there are over 163,000 Benign events that occur in Cluster 1,
mapping this cluster to the Benign class.

TABLE III
CLUSTER TO LABEL MAPPING

Cluster ID | Mapped Label

0 DDoS

1 BENIGN

2 PortScan

3 BENIGN
Actual Class BENIGN Bot DDoS PortScan
Cluster
(/] 2583 0 40822 45
1 163910 904 23415 38604
2 32688 48 10 40755
3 7797 18 [%] %]

Fig. 13. Clusters v Label.

The classification report that evaluates the performance
of K-Means at successfully labeling the network traffic is
displayed in Fig. 14. The model achieved an overall accuracy
of 72%, with particularly strong precision for the DDoS class
at 94% and high recall for the Benign class at 83%. The F1-
score for PortScan revealed moderate success at classification
with a value of 53%. Since the model failed to correctly
identify a cluster as the Bot class, the Bot class held 0 values
for the precision, recall, and F1-score. The macro-average F1-
score was relatively low at 52%, emphasizing the unequal
performance across classes from the class imbalance.

precision recall fl-score support

BENIGN 0.73 0.83 0.78 206978

Bot 0.00 0.00 0.00 970

DDoS 0.94 0.64 0.76 64247
PortScan 0.55 0.51 0.53 79404
accuracy 0.72 351599
macro avg 0.56 0.49 0.52 351599
weighted avg 0.73 0.72 0.72 351599

Fig. 14. Classification Report for K-Means.

One advantage of K-Means is its simplicity and computa-
tional efficiency, making it suitable for large datasets. It also
does not require labeled data, which is useful for realistic
interpretation of network traffic data, since events will not
be labeled in true implementation of NIDS. However, disad-
vantages of K-Means include sensitivity to initial centroids
and poor performance with imbalanced data, as demonstrated
by the inability to successfully identify the Bot class. There
is also the need to predefine the number of clusters, which
can impact the performance. Additionally, K-Means lacks
interpretability and may produce inconsistent cluster-to-label
mappings, causing the model to be difficult to understand.

VIII. CONCLUSION AND FUTURE WORK

This study showed the effectiveness and limitations of vari-
ous machine learning models used to identify and classify ma-
licious cyberattacks within network traffic. We implemented
Logistic Regression and SVM for binary classification, and
Decision Trees and ANN for multiclass classification. All
classification models that we implemented performed well
overall and with high overall accuracies; however, none of
the models excelled in correctly identifying all classes.

For binary classification, Logistic Regression performed
strongly with a high overall accuracy and a strong recall
value for the anomaly class. This is sought after, especially in
intrusion detection, because network traffic data can be very
valuable and hold sensitive information. SVM focused on high
anomaly recall, which is an important characteristic for high-
risk environments.

For multi-class classification, ANN delivered highly accu-
rate results across classes and was the best at identifying
the minority Bot class. Decision Trees provided interpretable
models and benefited from hyperparameter tuning to improve
evaluation metrics, but it was heavily sensitive to the class
imbalance. The Bot class was difficult for all models to
identify due to the limited number of events that were available
in the data.

Unsupervised learning performed through K-Means clus-
tering further showed the challenges of dealing with imbal-
anced datasets. The clustering correctly identified the majority
classes well, but it failed to distinguish minority cyberattacks,
like Bot instances. While our current approaches achieve
high accuracy on previously collected, organized, and labeled
datasets, a significant next step is enabling the models to
function effectively for real-time network intrusion detection.
Real-time adaptation will behave differently from our current
implementation because the models will continuously process
incoming network traffic and adapt to evolving attack types
without manual intervention.

Various changes will be applied to enable real-time func-
tionality in our models. The first step is to replace static
datasets with streaming data pipelines. This allows continuous
capturing, processing, and delivering of network traffic data for
immediate actions in our models. Popular streaming platforms
to explore are Apache Kafka, Apache Flink, and Amazon
Kinesis. Next, we will need to redesign the feature engineering
and data preprocessing procedures to process raw packets.
Our implementation of information gain is computed once
on static data and used throughout our models; however, to
save computation time when dealing with streaming data, it
would be beneficial to use a set of previously selected critical
features based on previous analysis. A final step would be
to implement a real-time alert system that triggers warnings
when a malicious event is encountered by the models.

REFERENCES

[1] M.N. Chowdhury, K. Ferens, M. Ferens, "Network intrusion detection
using machine learning”, Proceedings of International Conference on
Security Management (SAM), Las Vegas, USA, 2016, pp. 1-7.

[2] D. Bhamare, T. Salman, M. Samaka, A. Erbad, and R. Jain, “Feasibility
of supervised machine learning for cloud security,” in Proc. Int. Conf.
Information Science and Security (ICISS), IEEE, 2016.
Md A. Talukder, Md Manowarul Islam, et al, "Machine learning-based
network intrusion detection for big and imbalanced data using oversam-
pling, stacking feature embedding and feature extraction,” Journal of
Big Data, vol. 11, no. 33, February, 2024. BENICH 137436 140000
[4] Ahmed Tamer Assy, Yahia Mostafa, Ahmed Abd El-khaleq, Mag-
gie Mashaly, ”Anomaly-Based Intrusion Detection System using One-
Dimensional Convolutional Neural Network,” Procedia Computer Sci-
ence, vol. 220, pp. 78-85, March, 2023.

Confusion Matrix - Logistic Regression

[g 180000

—

160000

120000

100000

True label

[5] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. 80000
Bellekens, “"Machine learning based IoT intrusion detection system: An
MQTT case study (MQTT-IoT-IDS2020 dataset),” in Selected Papers 60000
from the 12th International Networking Conference, B. Ghita and S. ANOMALY AT
Shiaeles, Eds., Lecture Notes in Networks and Systems, INC 2020, Zalhl
Springer, Cham, 2021. Y
IX. APPENDIX BENIGN ANOMALY
Predicted label
TABLE IV
Top 20 FEATURES WITH HIGHEST INFORMATION GAIN FOR MULTICLASS Fig. 15. Confusion Matrix for Logistic Regression.
CLASSIFICATION
Feature Information Gain
Flow Bytes/s 1.2861
Average Packet Size 1.2772
Total Length of Fwd Packets 1.2015 180000
Subflow Fwd Bytes 1.2015
Packet Length Mean 1.1802 160000
Flow Duration 1.1732
Fwd Packets/s 1.1692 ANOMALY 140000
Flow Packets/s 1.1691 120000
Destination Port 1.1632 _
Flow IAT Mean 1.1433 5 100000
Packet Length Std 1.1342 v
Packet Length Variance 1.1341 = 80000
Flow IAT Max 1.0946
Fwd Packet Length Mean 1.0846 Il 60000
Avg Fwd Segment Size 1.0846 o0
Fwd Packet Length Max 1.0785
Total Length of Bwd Packets 1.0543 20000
Subflow Bwd Bytes 1.0543
Bwd Packets/s 1.0522 ANOMALY , BENIGN
Init_Win_bytes_forward 1.0373 Predicted label
Fig. 16. Confusion Matrix for SVM.
TABLE V
ToP 20 FEATURES WITH HIGHEST INFORMATION GAIN FOR BINARY
CLASSIFICATION
Feature Information Gain
Flow Bytes/s 0.8626
Average Packet Size 0.8548 160000
Total Length of Fwd Packets 0.7795
Subflow Fwd Bytes 0.7795 ANOMALY 137651 140000
Packet Length Mean 0.7590 120000
Flow Duration 0.7540
Fwd Packets/s 0.7494 z 100000
Flow Packets/s 0.7493 f
Destination Port 0.7408 = 80000
Flow IAT Mean 0.7235
Packet Length Std 0.7194 60000
Packet Length Variance 0.7194 BENIGN 20000
Flow IAT Max 0.6760
Fwd Packet Length Mean 0.6703 20000
Avg Fwd Segment Size 0.6703
Fwd Packet Length Max 0.6687 ANOMALY BENIGN
Total Length of Bwd Packets 0.6431 GCEIRCHLLT
Subflow Bwd Bytes 0.6431
Bwd Packets/s 0.6356 Fig. 17. Confusion Matrix for Ensemble Model.
Init_Win_bytes_forward 0.6231

200000

BENIGN 175000
150000
Bot 125000
@
2
=
v 100000
2
=
DDoS 75000
50000
PortScan 25000
0

BENIGN Bot DDoS PortScan
Predicted label

Fig. 21. Confusion Matrix for First Hyper-tuned Decision Tree.
Fig. 18. Initial Decision Tree with max 20 leaf nodes.

200000
BENIGN g : 1068 175000
150000

125000

100000

True label

DDoS 75000

50000

PortScan 25000

BENIGN Bot DDoS PortScan
Predicted label

Fig. 19. Confusion Matrix of Initial Decision Tree. Fig. 22. Hyper-tuned Decision Tree with limit on leaf nodes.

200000
BENIGN 175000
150000

125000

100000

True label

DDoS 75000

50000

PortScan 25000

BENIGN Bot DDos PortScan
Predicted label

Fig. 20. Hyper-tuned Decision Tree with no limit on leaf nodes. Fig. 23. Confusion Matrix for Final Hyper-tuned Decision Tree.

TABLE VI
CLASS DISTRIBUTION BEFORE AND AFTER RESAMPLING

Class Original Distribution | Resampled Distribution
BENIGN 206978 970
PortScan 79404 970
DDoS 64247 970
Bot 970 970
TABLE VII

ANN TEST ACCURACY AND LOSS FOR DIFFERENT LEARNING RATES

Learning Rate | Test Accuracy | Test Loss
0.1 0.5896 0.9750
0.01 0.9734 0.0758
0.001 0.9842 0.0537
0.0001 0.9638 0.1280

200000
205653
BENIGN 175000
150000
z - 160000
B Bot 125000 z 171707
E a - 140000
° 100000
= -
H " 120000
DDoS 75000 8
5 0 100000
=]
50000 3
g _ 80000
PortScan 25000 a
£ 60000
o £
BENIGN Bot DDoS Portscan 40000
Predicted label
g 20000

Fig. 24. Confusion Matrix for ANN Model. o

BENIGN DDoS PortScan Bot
Predicted Label

Training and Validation Accuracy

= Fig. 26. Confusion Matrix for K-Means.
099 | — Traning Accuracy

Validation Accuracy

098 /

—l —

Accuracy

0.96

Fig. 25. Training and Validation Accuracy of ANN Model.

TABLE VIII
K-MEANS CLUSTERING CENTROIDS

Row | Column 1 | Column 2
0 2.9682 -2.8122
1 -0.6962 0.2818
2 -0.7513 0.5317
3 10.7676 2.4582

